Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №291 Красносельского района Санкт-Петербурга (ГБОУ СОШ № 291 Санкт-Петербурга)

ПРИНЯТА		УТВЕРЖДЕНА
ПЕДАГОГИЧЕСКИМ СОВЕТОМ	ПРИКАЗОМ №	OT
ГБОУ СОШ №291	ДИРЕКТ <mark>ОР</mark> 1	ГБОУ СОШ №291
САНКТ-ПЕТЕРБУРГА	САНІ	КТ-ПЕТЕРБУРГА
РЕШЕНИЕ ОТ		О.В. МАРФИН
ПРОТОКОЛ №		

ДОПОЛНИТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА «Юный инженер»

Возраст обучающихся: 12-18 лет Срок реализации: 1 год

Разработчик: педагог дополнительного образования Поликарпов Юрий Николаевич

Программа разработана в 2022 году Программа переработана и дополнена в 2023 году

Санкт-Петербург 2023 год

1. Пояснительная записка

Дополнительная общеразвивающая программа «ЮНЫЙ ИНЖЕНЕР» составлена в соответствии с требованиями:

- Федеральный закон "Об образовании в Российской Федерации" от 29.12.2012 № 273-ФЗ.
- Порядком организации осуществления образовательной деятельности по ДОП, утвержденным приказом Минпросвещения РФ от 27 июля 2022 года № 629.

Направленность программы: техническая

Программа направлена на привлечение учащихся к современным технологиям конструирования, программирования и использования роботизированных устройств.

Адресат

Ученики 12-18 лет, интересующиеся инженерией

Краткая характеристика предмета

С началом нового тысячелетия в большинстве стран разработка робототехнических систем стала занимать существенное место в школьном и университетском образовании, подобно тому, как информатика появилась в конце прошлого века и потеснила обычные предметы. По всему миру проводятся конкурсы и состязания роботов для школьников и студентов: научно-технический фестиваль «Мобильные роботы» им. профессора Е.А. Девянина с 1999 г., игры роботов «Евробот» – с 1998 г., международные состязания роботов в России – с 2002 г., всемирные состязания роботов в странах Азии – с 2004 г., футбол роботов Robocup с 1993 г. и т.д.

В настоящее время активное развитие школьной робототехники наблюдается в Москве в результате целевого финансирования правительства столицы, в Челябинской области и некоторых других регионах России. Санкт-Петербург существенно отстает по количеству школ, занимающихся робототехникой, хотя уровень подготовки отдельных преподавателей и учащихся достаточно высокий. Назрела необходимость в некотором движущем центре, способном вовлечь в процесс как детей и педагогов, так и администрации школ и районов Северо-Западного региона.

Новизна, актуальность и педагогическая целесообразность

Последние годы одновременно с информатизацией общества лавинообразно расширяется применение микропроцессоров в качестве ключевых компонентов автономных устройств, взаимодействующих с окружающим миром без участия человека. Стремительно растущие коммуникационные возможности таких устройств, равно как и расширение информационных систем, позволяют говорить об изменении среды обитания человека. Авторитетными группами международных экспертов область взаимосвязанных роботизированных систем признана приоритетной, несущей потенциал революционного технологического прорыва и требующей адекватной реакции как в сфере науки, так и в сфере образования. В связи с активным внедрением новых технологий в жизнь общества постоянно увеличивается потребность в высококвалифицированных ВУЗов Санкт-Петербурга присутствуют инженерных кадрах. В ряде

специальности, связанные с инженерией, но в большинстве случаев не предварительной ориентации школьников на продолжения учебы в данном направлении. Многие абитуриенты стремятся попасть на специальности, связанные с инженерным делом, не предполагая о возможностях этой области. Между тем, инженерные конструирование и изобретательство присущи подавляющему большинству современных детей. Таким образом, появилась возможность и назрела необходимость в непрерывном образовании в сфере инженерной подготовки. Заполнить пробел между детскими увлечениями и серьезной ВУЗовской подготовкой позволяет изучение инженерного дела в школе.

Введение дополнительной образовательной программы «Юный инженер» в школе неизбежно изменит картину восприятия учащимися технических дисциплин, переводя их из разряда умозрительных в разряд прикладных. Применение детьми на практике теоретических знаний, полученных на математике или физике, ведет к более глубокому пониманию основ, закрепляет полученные навыки, формируя образование в его наилучшем смысле. И с другой стороны, игры в роботы, в которых заблаговременно узнаются основные принципы расчетов простейших механических систем и алгоритмы их автоматического функционирования под управлением программируемых контроллеров, послужат хорошей почвой для последующего освоения сложного теоретического материала на уроках.

Возможность прикоснуться к неизведанному миру роботов для современного ребенка является очень мощным стимулом к познанию нового, преодолению инстинкта потребителя и формированию стремления к самостоятельному созиданию. При внешней привлекательности поведения, роботы могут быть содержательно наполнены интересными и непростыми задачами, которые неизбежно встанут перед юными инженерами. Их решение сможет привести к развитию уверенности в своих силах и к расширению горизонтов познания.

Новые принципы решения актуальных задач человечества с помощью роботов, усвоенные в школьном возрасте (пусть и в игровой форме), ко времени окончания вуза и начала работы по специальности отзовутся в принципиально новом подходе к реальным задачам. Занимаясь с детьми на инженерных кружках, мы подготовим специалистов нового склада, способных к совершению инновационного прорыва в современной науке и технике.

Отличительные особенности программы

Данная образовательная программа имеет ряд отличий от уже существующих аналогов.

- Содержание программы уникально и сформировано под научным руководством профессорско-преподавательского состава ведущих вузов Санкт-Петербурга и в сотрудничестве с ними.
- Элементы кибернетики и теории автоматического управления адаптированы для уровня восприятия детей, что позволяет начать подготовку инженерных кадров уже с младших классов школы.

• Существующие аналоги предполагают поверхностное освоение элементов робототехники с преимущественно демонстрационным подходом к интеграции с другими предметами. Особенностью данной программы является нацеленность на конечный результат, т.е. ребенок создает не просто внешнюю модель робота, дорисовывая в своем воображении его возможности. Ребенок создает действующее устройство, которое решает поставленную задачу.

Программа может быть скорректирована в зависимости от возраста учащихся. Некоторые темы взаимосвязаны со школьным курсом и могут с одной стороны служить пропедевтикой, с другой стороны опираться на него.

Если кружок начинает функционирование в старшей группе, на многие темы потребуется гораздо меньше времени, но коснуться, так или иначе, нужно всего.

Уровень освоения — общекультурный.

Объем и срок реализации программы:

1 год обучения – 144 часа

Занятия проводятся 2 раза в неделю по 2 академических часа, с перерывом не менее 10 минут.

Цель программы:

Создать условия для мотивации, подготовки и профессиональной ориентации школьников для возможного продолжения учебы в ВУЗах и последующей работы на предприятиях по инженерным специальностям.

Задачи программы:

Образовательные

- Использовать современные разработки по робототехнике в области инженерного образования, организация на их основе активной внеурочной деятельности учащихся
- Познакомить учащихся с комплексом базовых инженерных технологий, применяемых при создании роботов
- Реализация межпредметных связей с физикой, информатикой и математикой
- Решение учащимися ряда инженерных задач

Развивающие

- Развить у школьников инженерное мышление, навыков конструирования, программирования и эффективного использования кибернетических систем
- Развить мелкую моторику, внимательность, аккуратность и изобретательность
- Развить креативное мышление и пространственное воображение учащихся
- Организовать участие в играх, конкурсах и состязаниях

Воспитательные

- Повысить мотивацию учащихся к изобретательству и созданию собственных роботизированных систем
- Сформировать у учащихся стремления к получению качественного законченного результата
- Сформировать навыки проектного мышления, работы в команде

Организационно – педагогические условия реализации программы

Язык реализации — русский

Форма обучения — очная

Условия приема: на первый год обучения принимаются все желающие

<u>Условия формирования группы:</u> программа рассчитана на коллективную работу с разновозрастными учащимися

Количественный состав группы- 15 человек

Особенности организации образовательного процесса - обусловлены ее практической значимостью. За учебный период учащиеся проходят курс конструирования, построения механизмов с электроприводом, а также знакомятся с основами программирования. Изучают различные датчики и исполнительные механизмы. Программирование в интегрированной среде разработки изучается углубленно. Ежедневно учащиеся изучают основы теории автоматического управления, робототехники, алгоритмики, а также занимаются творческими и исследовательскими проектами.

Этапы работы по программе:

Знакомство с конструктором, основными деталями и принципами работы. Создание простейших механизмов, описание их назначения. Использование встроенных возможностей микроконтроллера: просмотр показаний датчиков, простейшие программы. Знакомство со средой программирования, базовые команды управления роботом, базовые алгоритмические конструкции.

Формы организации деятельности учащихся на занятии:

Основная форма занятий

Преподаватель ставит новую техническую задачу, решение которой ищется как совместно так и индивидуально. При необходимости выполняется эскиз конструкции. Если для решения требуется программирование, учащиеся самостоятельно составляют программы на компьютерах (возможно по предложенной преподавателем схеме). Далее учащиеся работают в группах по 2 человека, ассистент преподавателя (один из учеников) раздает наборы с контроллерами и дополнительными устройствами. Проверив наличие основных деталей, учащиеся приступают к созданию автоматических устройств. При необходимости преподаватель раздает учебные карточки со всеми этапами сборки (или выводит изображение этапов на большой экран с помощью проектора). Программа загружается учащимися из компьютера в контроллер, и проводятся испытания на специально приготовленных макетах. При необходимости производится модификация программы и схемы. На этом этапе возможно разделение ролей на конструктора и программиста. По выполнении

задания учащиеся делают выводы о наиболее эффективных конструкциях и программных ходах, приводящих к решению проблемы. Удавшиеся модели снимаются на фото и видео. На заключительной стадии конструкции полностью разбираются и укомплектовываются комплекты, которые принимает ассистент.

Материально – техническое обеспечение:

Стратегия инновационного развития Российской Федерации на период до 2030 года в перечне основных направлений реализации определяет значительное повышение качества и престижа инженерного образования, в том числе посредством выстраивания системы поиска и обеспечения раскрытия способностей талантливых детей к творчеству по естественнонаучным и техническим направлениям, чему в полной мере способствует внедрение в образовательный процесс модели «Инженерный класс» как одной из важнейших структурных единиц организации обучающихся в образовательном учреждении для овладения ими инженерными компетенциями.

В ГБОУ СОШ № 291 Санкт-Петербурга реализуется модель «Инженерный класс». В рамках реализации данной модели в образовательном процессе образовательного учреждения используется учебное и учебно-лабораторное оборудование, приобретенное на средства грантов в форме субсидий, выделенных образовательным организациям Санкт-Петербурга в соответствии с постановлениями Правительства Санкт-Петербурга № 438 и № 439 от 29.06.2021 года:

- 1. Образовательный комплекс "Робототехника" (робот «Omegabot BOT-V2-21-00368» х 6 шт.; ноутбук «Asus UX535L» х 6 шт.; Стол технический с бортами) 1 шт.
- 2. Лазерно-технологический стенд №1 "Лазерная металлообработка" (лазер по металлу «ЦЛТ FMark-20»; вытяжка «СовПлим LF-300»; системный блок на базе IntelCore i5 + Монитор 27' + комплект (клавиатура + мышь).
- 3. Лазерно-технологический стенд №2 "Лазерная обработка неметаллический конструкционных материалов" (лазер для обработки неметаллических конструкционных материалов «Makeblocklaserbox MLP-k503-40W»; вытяжка «СовПлим LF-300»; системный блок на базе IntelCore i5 + Монитор 27' + комплект (клавиатура + мышь).
- 4. Технологический стенд "Трехмерное моделирование и макетирование" (3D-принтер, «Designer X Pro»; системный блок на базе IntelCore i5 + Монитор 27' + комплект (клавиатура + мышь).
- 5. Интерактивная панель Newline TT-6519RS.
- 6. МФУ Kyocera ECOSYS M6630cidn.
- 7. Системный блок на базе IntelCore i5 10400; комплект (клавиатура + мышь), монитор 27'.
- 8. Poyтер KeeneticGiant KN-2610.

Кадровое обеспечение: Программу реализует педагог дополнительного образования, соответствующий необходимым квалификационным характеристикам по соответствующей должности.

Планируемые результаты

Предметные

Понимание алгоритмического подхода решения кибернетических задач. Освоение основных алгоритмических конструкций. Использование простейших датчиков и исполнительных механизмов. Умение собрать базовые схемы и запрограммировать микроконтроллер.

Личностные

Изменения в развитии мелкой моторики, внимательности, аккуратности и особенностей мышления конструктора-изобретателя проявляется на самостоятельных задачах.

Метапредметные

Воспитательный результат занятий инженерным делом можно считать достигнутым, если учащиеся проявляют стремление к самостоятельной работе, усовершенствованию известных моделей и алгоритмов, созданию творческих проектов. Участие в научных конференциях для школьников, открытых состязаниях роботов и просто свободное творчество во многом демонстрируют и закрепляют его.

Кроме того, простым, но важным результатом будет регулярное содержание своего рабочего места в порядке, что само по себе непросто.

УЧЕБНЫЙ ПЛАН

I год обучения

№	Содержание и виды работы	Кол	ичество час	Формы промежуточной аттестации и контроля	
		Теория	Практика	Всего	
1	Инструктаж по ТБ	1	0	1	Наблюдение
2	Введение: инженерное дело			Методика тестирования	
3	Автоматические системы управления, программирование микроконтроллеров	11	17	28	Зачет
4	3D моделирование	9	17	26	Зачет
5	Аддитивные производственные технологии	10	30	40	Зачет
6	Программирование робота	2	42	44	Зачет
7	Итоговое занятие	2	2	4	Методика тестирования Поощрение лучших учащихся
	Итого	=36	=108	=144	

Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №291 Красносельского района Санкт-Петербурга (ГБОУ СОШ № 291 Санкт-Петербурга)

ПРИНЯТ		УТВЕРЖДЕН
ПЕДАГОГИЧЕСКИМ СОВЕТОМ	ПРИКАЗОМ №	OT
ГБОУ СОШ №291	ДИРЕКТ ОР І	ГБОУ СОШ №291
РЕШЕНИЕ ОТ	САНЬ	СТ-ПЕТЕРБУРГА
ПРОТОКОЛ №		О.В. МАРФИН

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК к программе «ЮНЫЙ ИНЖЕНЕР»

Год обучения	Дата начала обучения по программе	Дата окончания обучения по программе	Всего учебных недель	Количество учебных часов	Режим занятий
1 год	05.09.2023	31.05.2024	36	144	2 раза в неделю по 2 академических часа

П. Промежуточный и итоговый контроль/аттестация освоения учащимися дополнительной общеобразовательной (общеразвивающей) программы:

- **-Входной контроль -** *проводится при формирования коллектива* изучение отношения ребенка к выбранной деятельности, его способности и достижения в этой области, личностные качества ребенка: **(сентябрь)**
- **-Промежуточный контроль** проводится по окончании изучения темы, в коние полугодия, года **(декабрь)**
- -Итоговый контроль *проводится в конце обучения по программе* проверка освоения программы, учет изменений качеств личности каждого ребенка (май) Формы проведения диагностики и контроля:
 - -Наблюдение детей в процессе учебных занятий, конкурсов.
- -Открытые занятия для родителей, педагогов, специалистов, администрации.

III. Режим работы в период школьных каникул:

Занятия проводятся по расписанию в форме групповых занятий, участия в играх, конкурсах технической направленности.

РАБОЧАЯ ПРОГРАММА К дополнительной общеразвивающей программе «ЮНЫЙ ИНЖЕНЕР»

Цель программы:

Создать условия для мотивации, подготовки и профессиональной ориентации школьников для возможного продолжения учебы в ВУЗах и последующей работы на предприятиях по инженерным специальностям.

Образовательные

- Использоватьние современных разработок по робототехнике в области образования, организация на их основе активной внеурочной деятельности учащихся
- Ознакомление учащихся с комплексом базовых технологий, применяемых при создании роботов
- Реализация межпредметных связей с математикой

Развивающие

- Развитие у школьников инженерного мышления, навыков конструирования, программирования и эффективного использования кибернетических систем
- Развитие мелкой моторики, внимательности, аккуратности и изобретательности
- Развитие креативного мышления, и пространственного воображения учащихся

Воспитательные

- Повышение мотивации учащихся к изобретательству и созданию собственных роботизированных систем
- Формирование у учащихся стремления к получению качественного законченного результата

ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ:

Должны знать:

- -Освоение алгоритмического подхода решения задач.
- Основные алгоритмические конструкции.
- -Понимание принципа устройства кибернетической системы.
- -Использование простейших датчиков и регуляторов для управления системой.
- Особенности мышления конструктора-изобретателя

Должны уметь:

- Решать алгоритмические задачи.
- -Умение собрать схему и усовершенствовать ее для выполнения конкретного задания. Составлять простейшие алгоритмы.
- Участие в научных конференциях для школьников и просто свободное творчество во многом демонстрируют и закрепляют полученные навыки.
- Содержать свое рабочее место и конструктор в порядке

Государственное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №291 Красносельского района Санкт-Петербурга (ГБОУ СОШ № 291 Санкт-Петербурга)

ОТРИНЯТО		УТВЕРЖД	EHO
ПЕДАГОГИЧЕСКИМ СОВЕТОМ	ПРИКАЗОМ №	OT	
ГБОУ СОШ №291	ДИРЕКТ ОР І	БОУ СОШ Ј	№291
РЕШЕНИЕ ОТ	САНЬ	Т-ПЕТЕРБУ	РΓА
ПРОТОКОЛ №		O.B. MAP	ФИН

КАЛЕНДАРНО -ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 1 года обучения

Программа: « ЮНЫЙ ИНЖЕНЕР»

Группа: №1

Педагог дополнительного образования: ПОЛИКАРПОВ ЮРИЙ

НИКОЛАЕВИЧ

NG II.		Коли	ичество часо	В	
№	Дата	Тема	Теория	Практика	Всего
1	05.09	Инструктаж по ТБ	1	0	1
2	08.09	Введение: инженерное дело	1	0	1
		стемы управления,	11	17	28
пр	ограммирование	микроконтроллеров			
3	12.09	Представление об АСУ	1	1	2
4	15.09	Микроконтроллеры	0	2	2
5	19.09	Программирование микроконтроллеров	0	2	2
6	22.09	MicroPython	1	1	2
7	26.09	Понятие алгоритма	0	2	2
8	29.09	Объекты алгоритма: величины	1	1	2
9	03.10	Объекты алгоритма: команда присваивания	1	1	2
10	06.10	Объекты алгоритма: выражения	1	1	2
11	13.10	Алгоритмические конструкции: следование	1	1	2
12	17.10	Алгоритмические конструкции: ветвление	1	1	2
13	20.10	Алгоритмические	1	1	2

1 1		1	l		l
		конструкции:			
		повторение			
14	24.10	Библиотеки и подпрограммы	1	1	2
		Программирование			
15	27.10	входов/выходов мк	1	1	2
		Программирование			
16	31.10	таймеров мк	1	1	2
	3D мод	целирование	9	17	26
1.5		Введение в 3D	1	4	_
17	03.11	моделирование.			2
18	07.11	Система FreeCAD.	0	2	2
19	10.11	Примитивы: куб.	0	2	2
20	14.11	Примитивы: шар.	1	1	2
21	17.11	Примитивы: цилиндр.	0	2	2
22	21.11	Примитивы: труба.	0	2	2
23	24.11	Пересечение тел	1	1	2
24	28.11	Объединение тел	1	1	2
25	01.12	Вычитание тел	1	1	2
26	05.12	Эскизы	1	1	2
27	08.12	Соединение тел	1	1	2
28	12.12	Сетки	1	1	2
29	15.12	Редактирование	1	1	2
29	13.12	готовых 3D Объектов.	1	1	۷
Адди	тивные произ	водственные технологии	10	30	40
30	19.12	Автоматизированные	1	1	2
		линии производства.	1.	<u>-</u>	
31	23.12	Станки с ЧПУ.	1	1	2
32	26.12	Аддитивные	0	2	2
		технологии.			
33	30.12	3D принтер. Различные типы механики 3D	1	1	2
	30.12	принтеров.		2	
34	09.01	Устройство экструдера	0	2	2
35	12.01	Термобарьер	1	1	2
		Инструктаж по ТБ			_
36	16.01	Термоголовка	0	2	2
37	19.01	Термокровать	1	1	2
38	23.01	Клей для печати	0	2	2
39	26.01	Подготовка 3D модели	1	1	2

		к печати. Слайсер Cura.			
40	30.01	Заполнение	0	2	2
41	02.02	Печать 3D модели.	1	1	2
42	06.02	Понятие робота. Причины использования роботов. Мобильные роботы.	0	2	2
43	09.02	Разработка мобильного робота, создание 3D моделей его отдельных элементов.	1	1	2
44	13.02	Моделирование шасси	0	2	2
45	16.02	Моделирование крепления двигателей	1	1	2
46	20.02	Моделирование передней опоры	0	2	2
47	27.02	Моделирование отсеков для электроники	1	1	2
48	01.03	Подготовка к печати и печать элементов мобильного робота.	0	2	2
49	05.03	Сборка мобильного робота.	0	2	2
	Программи	грование робота	2	42	44
50	12.03	Программирование робота: движение по прямой.	0	2	2
51	15.03	Программирование робота: повороты, танковый разворот.	1	1	2
52	19.03	Программирование робота: движение по окружности.	0	2	2
53	23.03	Программирование робота: движение по кругу.	0	2	2
54	26.03	Программирование робота: движение по восьмерке.	0	2	2
55	29.03	Программирование робота: движение змейкой.	0	2	2

56	02.04	Программирование робота: движение по меандру.	0	2	2
57	05.04	Программирование робота: движение по периметру.	0	2	2
58	09.04	Движение по спирали	0	2	2
59	12.04	Движение вдоль лестницы	0	2	2
60	16.04	Движение по заданной линии	0	2	2
61	19.04	Ветвление	1	1	2
62	23.04	Ветвление	0	2	2
63	26.04	Ветвление	0	2	2
64	03.05	Ветвление	0	2	2
65	07.05	Цикл	0	2	2
66	14.05	Цикл	0	2	2
67	17.05	Цикл	0	2	2
68	21.05	Цикл	0	2	2
69	24.05	Змейка с циклом	0	2	2
70	24.05	Меандр с циклом	0	2	2
71	28.05	Синхронизация моторов	0	2	2
		Зачёт	2	2	4
72	31.05	Задание №1	1	1	2
		Итог	36	108	144

ПЛАН РАБОТЫ С РОДИТЕЛЯМИ

№ п/п	Название мероприятия	Номер группы	Сроки	Место проведения
1.	Родительское собрание Тема: «О задачах кружка в новом учебном году, планирование совместной работы. Выбор родительского комитета»	№1	сентябрь	ГБОУ СОШ №291 каб. № 304
2.	Родительское собрание по итогам года	№ 1	май	ГБОУ СОШ №291 каб. № 304
3.	Награждение лучших кружковцев	№ 1	май	ГБОУ СОШ № 291 каб. № 304

ОЦЕНОЧНЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

Методическое обеспечение дополнительной образовательной программы *Методы организации учебного процесса*

Словесные методы (беседа, анализ) являются необходимой составляющей учебного процесса. В начале занятия происходит постановка задачи, которая производится, как правило самими детьми, в сократической беседе. В процессе – анализ полученных результатов и принятие решений о более эффективных методах и усовершенствованиях конструкции, алгоритма, а, может, и самой постановки задачи. Однако наиболее эффективными для ребенка, несомненно, являются наглядные и практические методы, в которых учитель не просто демонстрирует процесс или явление, но и помогает учащемуся самостоятельно воспроизвести его.

Ожидаемые результаты и способы определения их результативности

Образовательные

Результатом занятий инженерным делом будет способность учащихся к самостоятельному решению ряда задач, а также создание творческих проектов. Конкретный результат каждого занятия — это конструкция или алгоритм, выполняющий поставленную задачу. Проверка проводится как визуально — путем совместного тестирования, так и путем изучения программ и внутреннего устройства конструкций, созданных учащимися. Основной способ итоговой проверки — регулярные зачеты с известным набором пройденных тем. Сдача зачета является обязательной, и последующая пересдача ведется «до победного конца».

Развивающие

Изменения в развитии мелкой моторики, внимательности, аккуратности и особенностей мышления конструктора-изобретателя проявляется на самостоятельных задачах. Наиболее ярко результат проявляется при создании и защите самостоятельного творческого проекта.

Воспитательные

Воспитательный результат занятий инженерным делом можно считать достигнутым, если учащиеся проявляют стремление к самостоятельной работе, усовершенствованию известных моделей и алгоритмов, созданию творческих проектов. Участие в научных конференциях для школьников, открытых состязаниях роботов и просто свободное творчество во многом демонстрируют и закрепляют его.

Кроме того, простым, но важным результатом будет регулярное содержание своего рабочего места и конструктора в порядке, что само по себе непросто. Формы подведения итогов реализации ДОП

- В течение курса предполагаются регулярные зачеты, на которых решение поставленной заранее известной задачи принимается в свободной форме (не обязательно предложенной преподавателем).
- По окончании курса учащиеся защищают творческий проект, требующий проявить знания и навыки по ключевым темам.

- Кроме того, полученные знания и навыки проверяются на открытых конференциях и международных состязаниях, куда направляются наиболее успешные ученики.
- Балтийский научно-инженерный конкурс проводится зимой и собирает разработки учащихся в самых разных областях науки и техники. Это конкурс доступен для ребят, серьезно занимающихся робототехникой.

ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

- 3D принтер
- Компьютер
- Набор датчиков и исполнительных механизмов
- Микроконтроллер

Информационные источники

Нормативная база

1. Федеральный закон №273-Ф3 (ст.15, ст16, ст.22; ст.75)

Министерства образования и науки Российской Федерации (Минобрнауки России) от 29 августа 2013 г. № 1008 «Порядок организации и осуществления образовательной деятельности дополнительным ПО

общеобразовательным программам»;

2.СанПиН 2.4.4.3172-14 "Санитарно-эпидемиологические требования устройству, содержанию и организации режима работы образовательных организаций дополнительного образования детей" (Постановление Главного государственного санитарного врача Российской Федерации от 4 июля 2014 г. №41), изменения от 1 марта 2017 года.

Для педагога

- 1. Робототехника для детей и родителей 2. С.А. Филиппов. СПб: Наука, 2010.
- 2. Санкт-Петербургские олимпиады ПО кибернетике М.С.Ананьевский, Г.И.Болтунов, Ю.Е.Зайцев, А.С.Матвеев, А.Л.Фрадков, В.В.Шиегин. Под ред. А.Л.Фрадкова, М.С.Ананьевского. СПб.: Наука, 2006.
- 3. Журнал «Компьютерные инструменты в школе», подборка статей за 2010 г. «Основы робототехники на базе конструктора Lego Mindstorms NXT».

Для детей и родителей

- 1. Робототехника для детей и родителей 3. С.А. Филиппов. СПб: Наука, 2010.
- кибернетике 2. Санкт-Петербургские олимпиады ПО М.С.Ананьевский, Г.И.Болтунов, Ю.Е.Зайцев, А.С.Матвеев, А.Л.Фрадков, В.В.Шиегин. Под ред. А.Л.Фрадкова, М.С.Ананьевского. СПб.: Наука, 2006.
- 3. Журнал «Компьютерные инструменты в школе», подборка статей за 2010 г. «Основы робототехники на базе конструктора Lego Mindstorms NXT».
- 4. Я, робот. Айзек Азимов. Серия: Библиотека приключений. М: Эксмо, 2002.
- 5.См., например, R. Murray, Ed. (2002) Control in an information rich world: report of the panel on future directions in control, dynamics, and systems [Online], http://www.cds.caltech.edu/~murray/cdspanel/report/cdspanel-15aug02.pdf, а также сайт Европейского института встроенных систем http://www.eeci-institute.eu/ 6.С 2013 г. рекомендуется к использованию: Робототехника для детей и родителей, 3-е издание. С.А.Филиппов. СПб: Наука, 2013.

Интернет источники

1. https://www.niisi.ru/kumir/dl.htm